Review Article

Quinoline containing benzimidazole and their biological activities

Gajanan Gavande¹, Amol Lavate², Vaibhav Dhakane¹, Dnyaneshwar Jagtap¹, Amol Kulkarni¹, Bhushan D Varpe²,*

¹Dept. of Pharmacy, DKSS's Dattakala College of Pharmacy, Swami Chincholi, Maharashtra, India
²Dept. of Pharmacy, Amepurva Forum’s De Ashok Gujar College of Pharmacy, Solapur, Maharashtra, India

ARTICLE INFO

Article history:
Received 26-05-2021
Accepted 21-07-2021
Available online 31-07-2021

Keywords:
Quinoline
Benzimidazole
Pharmacological activities

ABSTRACT

Quinoline and derivatives of Benzimidazole are widely studied for their different activities. One of the essential classes of anti-malarial and anti-bacterial treatment is the quinoline derivatives. Quinoline and Benzimidazole are flexible lead molecules used to model the future molecules of drugs. The present review outlines the potential pharmacological activities of quinoline and Benzimidazole derivatives.

© This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1. Introduction

Quinoline and benzimidazole derivatives are known for their excellent potential for various pharmacological activities. Many marketed drugs contain these two heterocycles in their structures.

Fig. 1: Structure of quinoline and benzimidazole

Fluoroquinolone antibiotics, which have a fluorine atom in their molecular structure and are active against Gram-negative and Gram-positive bacteria, account for nearly all quinolone antibiotics currently in use.¹ Ciprofloxacin, gemifloxacin, levofloxacin, moxifloxacin, and ofloxacin are fluoroquinolone antibiotics.² Thiabendazole, flubendazole, astemizole, lansoprazole, and omeprazole are some of the commercially available benzimidazole-containing medications.³ There is an important place in drug discovery for quinolinyl and benzimidazole heterocycles. This review article focuses on quinolinyl and benzimidazole conjugates for their analgesic, anti-inflammatory, antibacterial, antifungal, antiviral, anti-parasitic, anti-Parkinson’s disease, anticancer, antioxidants, antidiabetic, anticoagulant, and antimalarial activities. Most of the researchers have studied quinolinyl-based benzimidazole derivatives as models for the development of new antimicrobial agents.

The Quinoline ring system consists of heterocycles where a pyridine ring fuses the benzene ring. Quinoline derivatives have a range of biological activities such as antimicrobial⁴, anti-tuberculosis⁵, anti-inflammatory⁶, and anti-cancer.⁷ This review contains reported derivatives of quinoline and Benzimidazole and their biological activities.
2. Quinoline Benzimidazole Conjugates

El-Feky, S. A.et al. synthesized Benzimidazole and fluorinated quinoline derivatives and tested for anti-inflammatory activity and ulcerative effect. As they were an ulcerogenic activity, the most active compounds (1a-f) were found to be superior to celecoxib. Compound 1a showed the highest anti-inflammatory activity as well as the best binding profiles at the COX-2 binding site. It is stated that the existence of the acetamide linker in compounds 1a–f could favor activity over the non-substituted benzimidazole derivative. (Figure 1).

Fig. 2: Benzimidazole and fluorinated quinoline derivatives

Brajša, K. et al. synthesized amidino-replaced benzimidazole and benzimidazo[1,2a] quinoline derivatives and studied them in 2D and 3D cell culture systems for their cytotoxic activities. Synthesized compounds were tested as a small platform to compare antitumor activity in 2D and 3D cell culture systems and comparison with the relationship between structure and function. A human cancer breast (SK-BR-3, MDA-MB-231, T47D) and pancreatic cancer cells (MIAPaCa2, PANC1) have been tested with the 3D cell culture method. Compounds have shown moderate to potent activities as compared to standards (Figure 3).

Fig. 3: Amidino-replaced benzimidazole and benzimidazo[1,2a] quinoline derivatives

Garudachari, B. et al. synthesized Benzimidazole-quinoline derivatives and tested them for antimicrobial activities. The compounds were screened using a well plate method (inhibition zone) for their antibacterial and antifungal activity invitro. There result showed strong antibacterial activity in compounds 3c, 3d, 3ac, and 3ad. It was found that the compound 3ab is a powerful antifungal agent. Compounds 3a, 3aa, and 3af showed Moderate to good antimicrobial activity.

Fig. 4: Benzimidazole-quinoline derivatives

Mungra, D.C. et al synthesized benzimidazoles[1,5-a]quinoline-basedtetrazoloand tested for antimicrobial activity. Compound 4e showed significant activity against Bacillus subtilis Gram-positive bacteria. Compounds 4a and 4o were found significantly active against Bacillus subtilis compared with ampicillin (Figure 5).

Fig. 5: benzimidazoles[1,5-a]quinoline- derivatives

Lamazzi, C. et al synthesized Cyanoindolo[3,2-c]quinolinesandBenzimidazo[1,2-c]quinazolines and tested for cytotoxic activity. Compounds have shown excellent cytotoxic activity against murine L1210 leukemia cell line (Figure 6).

Fig. 6: Cyanoindolo[3,2-c]quinolinesandBenzimidazo[1,2-c]quinazolines

Perin, N. et al synthesized 2-substitutedbenzimidazo[1,2-a]quinolines and tested for their antitumor activity. Compounds have shown activities in the range of 0.2 ->10 µM against HCT116, 2.5-39 µM against MCF-7, and 0.2 ->10 µM against H460 (Figure 7).
discovered. Molecules can lead to potent drug candidates being biological activity. Synthesis and study of such designed Various derivatives identified have demonstrated excellent and Benzimidazole derivatives are mostly studied. For their anti-cancer and antibacterial activities, quinoline 3. Conclusion: Fig. 9: Benzimidazo[1,2-b]-isoquinolines, indolo[2,3-b]benzimidazo[1,2-a]quinolines and pyridocarbazoles. Weinkauf, R. L. et al synthesized benzimidazo[1,2-b]-quinolines, and pyridocarbazoles and tested for antineoplastic activity against HCT-116, 9-KB, and Topoisomerase II. Compounds have shown cytotoxicity against HCT-116 in the range of 0.8- >150 μ/mL, 9-KB in the range of 2.2- >150 μ/mL, and 0.1-10 μ/mL (Figure 9).13

Fig. 8: Benzimidazo[1,2-b]-ylamides of 1-r-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids. and biological activity of benzimidazol-2-ylamides by p-TsOH and investigation of their antimicrobial activity. Med Chem Res. 2011;20(6):782–9.

Fig. 7: 2-substituted benzimidazo[1,2-a]quinolines

Ukrainets, I.V. et al. synthesized Benzimidazol-2-ylamides of 1-r-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids are synthesized and tested for their antithyroid and antituberculosis activities. Compounds have shown moderate to potent antithyroid and antituberculosis activities. (Figure 8) 12

Fig. 8: Benzimidazo[1,2-b]-ylamides of 1-r-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids

Weinkauf. R. L. et al synthesized benzimidazo[1,2-b]-ouinoes, ndoo[2,3-]2quinolines, and pyridocarbazoles and tested for antineoplastic activity against HCT-116, 9-KB, and Topoisomerase II. Compounds have shown cytotoxicity against HCT-116 in the range of 0.8- >150 μ/mL, 9-KB in the range of 2.2- >150 μ/mL and 0.1-10 μ/mL (Figure 9). 13

Fig. 9: Benzimidazo[1,2-b]-ouinoes, ndoo[2,3-]2quinolines, and pyridocarbazoles

3. Conclusion:
For their anti-cancer and antibacterial activities, quinoline and Benzimidazole derivatives are mostly studied. Various derivatives identified have demonstrated excellent biological activity. Synthesis and study of such designed molecules can lead to potent drug candidates being discovered.

4. Source of Funding
None.

5. Conflict of Interest
None.

References

Author biography
Gajanan Gavande, M.Pharm Student
Amol Lavate, Assistant Professor
Vaibhav Dhakane, M.Pharm Student
Dnyaneshwar Jagtap, M.Pharm Student
Amol Kulkarni, Principal

Bhushan D Varpe, Assistant Professor